
Parallel Test Generation for Combinatorial Models
Based on Multivalued Decision Diagrams

Andrea Bombarda
Department of Engineering

University of Bergamo
Bergamo, Italy

andrea.bombarda@unibg.it

Angelo Gargantini
Department of Engineering

University of Bergamo
Bergamo, Italy

angelo.gargantini@unibg.it

Abstract—Combinatorial interaction testing (CIT) is a testing
technique that has proved to be effective in finding faults due
to the interaction among inputs, and in reducing the number
of test cases. One of the most crucial parts of combinatorial
testing is the test generation for which many tools and algorithms
have been proposed in recent years, with different methodologies
and performances. However, generating tests remains a complex
procedure that can require a lot of effort (mainly time). Thus, in
this paper, we present the tool pMEDICI which aims to reduce
the test generation time by parallelizing the generation process
and exploiting the recent multithread hardware architectures.
It uses Multivalued Decision Diagrams (MDDs) for representing
the constraints and the tuples to be tested and extracts from
them the t-wise test cases. Our experiments confirm that our tool
requires a shorter amount of time for generating combinatorial
test suites, especially for complex models, with a lot of parameters
and constraints.

Index Terms—combinatorial testing, multithread test genera-
tion, multivalued decision diagrams

I. INTRODUCTION

Combinatorial interaction testing (CIT) has been an active
area of research in the last years since it has proven to be
very effective to test complex systems with multiple input
parameters, and to help testers in finding defects due to the
interaction of different inputs. This interaction is tested in
a systematic way. In general, in t-way testing, every t-uple
of parameter values must be tested at least once. However,
generating test suites that guarantee the desired t-way coverage
is not always an easy task, since it may require a lot of time or
may produce a test suite with a high number of test cases. This
is the rationale behind several research works, presenting tools
for test generation1. In most cases, testers want to minimize
the test suite size, since the time for executing tests on the
actual systems is usually higher than the one required for their
generation. Nevertheless, in some cases (especially for small
and not really complex systems), a high generation time can
discourage testers to test their software.

Thus, considering that modern PCs are all equipped with
multicore and multithread CPUs, we have tried to investigate
whether was possible to develop a tool exploiting multiple
threads in order to speed up the test generation process.

1For a list of tools see for instance https://www.pairwise.org/tools.html.

In this paper, we present the pMEDICI combinatorial test
generator tool. It exploits MDDs (Multivalued Decision Dia-
grams) and multiple threads for generating combinatorial test
suites with a lower generation time. As other test generation
tools (such as MEDICI [7]) it is able to deal with combinatorial
models with parameters, both boolean or enumeratives, and
constraints expressed as logical formulas. With our experi-
ments, pMEDICI has proved to be very effective in terms
of test suite generation time, especially for models without
constraints.

The paper is structured as follows. In Sect. II, we present
the general background on CIT and MDDs. Then, Sect. III
presents the pMEDICI combinatorial test generator, its struc-
ture and algorithm, and the basic idea underlying the use of
MDDs for CIT. The performances of the tool are evaluated
in Sect. IV by using the benchmark examples provided in the
context of the CT-Competition. In Sect. V we present relevant
related work and, finally, Sect. VI presents some future work
and concludes the paper.

II. BACKGROUND

A. Combinatorial Interaction Testing

With Combinatorial Interaction Testing (CIT), the tester
systematically explores the t-way interaction between all the
features inside a given system. This is obtained by combining
all the t-tuples of parameter assignments in the smallest
possible number of test cases and aims to reduce the time
required for testing, by decreasing the number of test cases.
The most commonly applied combinatorial testing technique
is pairwise testing, which consists in generating a test suite
covering all pairs of input values (each pair in at least one test
case).

Listing 1 represents a simple example of a combinatorial
model, where a list of parameters and a list of constraints
are specified using the CTWedge format [6]. In particular,
the model contains three parameters (one boolean parameter
and two enumeratives) and two constraints, which express the
logical relation between the parameter and their values.

If a tester wants to exhaustively test the system modeled
as per Listing 1, 2 · 2 · 2 = 8 tests should be performed,
if the constraints are ignored. Instead, using pairwise testing,

https://www.pairwise.org/tools.html

Model Example1

Parameters:
P1: { v1 v2 };
P2: { v3 v4 };
P3: Boolean;

Constraints:
(P3!=true OR P2!=v3 OR P1!=v1)
! (P3 = true AND P1 = v2)

Listing 1. Example of a combinatorial model

only 4 tests are sufficient to cover all the possible couples of
parameter values.

A combinatorial model, such as the one presented in List-
ing 1, is usually given as input to a tool, called Test Generator,
that generates a test suite with combinatorial coverage.

B. Multivalued Decision Diagrams

The tool presented in this paper is built on the top of the
concept of the decision diagrams, as defined in the following.

Definition 1 (Decision diagram). A decision diagram is
a graph that represents a function f : D → B where
D = D1 × · · · × · · ·Dn and B is the Boolean domain, i.e.,
B = {F, T}.

In general, a decision diagram is used to evaluate the truth
value of f when applied to the variables x1, · · · , xn. If all the
domains Di are binary, then we use Binary Decision Diagrams
(BDDs) to represent Boolean functions. BDDs are widely used
within the domain of system design verification. Multivalued
Decision Diagrams (MDD), instead, extend BDDs by allowing
every variable to have a different domain with a different size.
Each MDD respects the following properties:

• only two terminal nodes are available, which are labeled
as F and T;

• every non-terminal node is labeled by an input variable
xi and has |Di| outgoing labeled edges, i.e. one per each
possible value of the domain;

• every variable appears only once in the MDD, in any path
from the root to a terminal node;

Given these properties, an MDD can select which values of
the domain D are selected by the function f . In fact, if the
values x1, . . . , xn for the variables in D are selected by f ,
then f(x1, . . . , xn) = T , otherwise f(x1, . . . , xn) = F .

Typically, among MDDs, it is possible to perform unary
operations such as complement, computation of the cardinality,
or the most classical binary operations like union, intersection,
and difference. In particular, since MDDs can represent logic
functions, operations among MDDs are equivalent to logic
operations. Given an MDD M representing the function f ,
its complement ¬m represents the function ¬f . The union
between two MDDs M1∪M2 represents the function f1∨f2.
The intersection between two MDDs M1 ∩M2 represents the
function f1 ∧ f2. Finally, given an MDD M , its cardinality
|M | represents the number of all the possible paths to the

v1, v2
P1 P2 P3 T

v3,v4 true, false

Fig. 1. MDD structure for the combinatorial problem in Listing 1 if the
constraints are ignored

terminal node T. The value of cardinality of an MDD can be
used to check the consistency between boolean functions, i.e.
if f1(x) and f2(x) are inconsistent, the intersection between
the MDDs representing the two functions is empty, for all the
values of x.

For the work presented in this paper, we have used mddlib 2,
by the Consortium for Logical Models and Tools, which is the
only open-source Java library that natively supports MDDs and
allows the computation of operations between them.

III. PMEDICI: A PARALLEL MDD-BASED ALGORITHM
FOR CIT

In this paper, we present pMEDICI, a Java tool exploiting
MDDs for generating test suites with combinatorial coverage.
It implements multithreading strategies for reducing the time
required for test generation.

A. How to deal with CIT models with MDDs

As explained in Sect. II, MDDs allow expressing boolean
functions. Hence, an MDD can be used to represent the
boolean function computing the validity of the assignments
to each parameter in the combinatorial model. If ignoring
the constraints, a combinatorial model with n parameters
with cardinality pi can be easily represented using an MDD
MTS with n non-terminal nodes (with the name of the
corresponding parameter each) and with pi outgoing labeled
edges for all the parameters except the last one, which has
only one edge connected to the terminal node T - since
each assignment is valid if constraints are ignored. Fig. 1
represents the MDD MTS associated with the combinatorial
model shown in Listing 1. Every path from the root to the
terminal T is a syntactically correct assignment of values to
the parameters. Thus, the MDD MTS represents all the tests,
i.e., all the possible paths from the start to the terminal node.
Thus, its cardinality is equal to

∏n
i=1 pi and represents the

total number of possible tests.
If also the constraints are considered, some of the possible

paths, i.e. those that will violate the constraints, will lead to the
terminal node F. In fact, the constraints corresponding to a CIT
problem can be described using propositional logic3. Every
constraint can be represented as a boolean formula containing
the operators ¬,∨,∧ and equality between the parameters and
their values. Then, each constraint can be represented by an
MDD modeling its truth function: it can be built using the
equivalence between MDDs and boolean formulas proposed,
and the operations among MDDs presented in Sect. II. In
particular, the intersection between the MDD MTS and the

2https://github.com/colomoto/mddlib
3There are some limits that we will discuss later.

2

https://github.com/colomoto/mddlib

v1
P1 P2 P3 T

v3,v4 true, false

v2
P2 P3

v3,v4 false

F
true

Fig. 2. MDD structure when a constraint is included

v1
P1 P2 P3 T

v3,v4 true, false

v2 v3,v4
FP2 P3

true, false

Fig. 3. MDD structure with the assignment P1 = v1

MDDs derived from each constraint is a new MDD that
accepts only valid tests which comply with all the constraints.
For example, Fig. 2 shows how the MDD in Fig. 1 evolves
when the second constraint (!(P3 = true AND P1 = v2)) of
Listing 1 is included.

B. How to represent (partial) tests with MDDs

First, note that an MDD can be modified by adding a tuple
to it. In this way, an MDD can keep track of the values
assigned to the parameters in a given test. Formally, the MDD
can be updated by computing its intersection with the MDD
representing the assignments pi = vi,j contained in the tuple.
For instance, by adding the assignment P1 = v1, the original
MDD of Fig. 2 becomes the MDD shown in Fig. 3.

As we will discuss later in detail, pMEDICI builds the tests
incrementally, by collecting suitable tuples in order to obtain
valid tests. In order to store the information about the model
and its constraints, together with the tuples added so far to a
(partial) test, we introduce the notion of test context.

Definition 2 (Test context). We call TC = ⟨Ai,MTS⟩ a test
context for P , where Ai is a list of assignments to some
parameters pi to one of their possible values vi,j and MTS

is the MDD representing a combinatorial problem P and the
assignments committed to the context so far.

Each test context TC contains a list of assignments that
represents a partial test case T together with the MDD repre-
senting all the information about the model and the test itself.
A test context is complete, i.e. it represents a complete test
case if the list of assignments Ai includes all the parameters
of the model.

Given a test context TC, and be MTS its MDD, a tuple tp
can be:

• implied, if all the assignments of the tuple tp are already
contained in the test case T . In this case, the check of the
compatibility of tp with the MDD MTS is not required;

Algorithm 1 Tuple building procedure
Require: TupBuilder, the thread building the tuples
Require: P , the map containing all the parameters of the CIT

model and their possible values
Ensure: TupBuffer , the buffer containing the tuples built by

TupBuilder

▷ Create the tuple builder thread
1: TupBuilder.create()

▷ Generate the tuples
2: TupBuilder.run(

3: for each ti ∈ cartesian product(P) do
4: TupBuffer .add(ti)
5: end for
6:)

• compatible, if the tuple tp contains only assignments
which are not in conflict with those of the test context
TC, i.e. in the test TC, each parameter contained in the
tuple tp is still not valorized or has an equal value, and tp
does not clash with the constraints of the combinatorial
problem.

• uncoverable, if the assignments contained in the tuple tp
clash with the constraints of the combinatorial problem.
This check requires the use of the MDD MTS containing
only the constraints.

C. Tool structure and algorithm

The structure of the pMEDICI tool is shown in Figure 4. A
single thread generates all the tuples starting from a CIT model
(such as the one in Listing 1), exploiting the cartesian product,
and stores them in a shared buffer with a limited capacity,
as shown in Algorithm 1. The tuple generation thread sleeps
until some of the tuples are consumed and more space for
other tuples becomes available. This process allows to avoid
storing all the tuples and, thus, guarantees a consistent save
in memory utilization, especially for complex combinatorial
models. When at least a tuple is available, n threads (where n
can be either specified by the user or automatically selected by
the tool depending on the execution environment architecture)
start consuming each tuple. Each tuple tj in the shared buffer
is consumed by one thread which searches the best test context
and drops tj in it. Test contexts are continuously updated as
each tuple is managed by a thread. This process is described
in Algorithm 2 and is repeated until all the tuples have been
consumed. In particular, given a tuple tj :

• if a thread finds a test context tci in which the tuple tj
is already implied, then tj is consumed and marked as
covered;

• if a thread finds a test context tci in which the tuple
tj is compatible, tj is passed to tci, which updates its
MDD structure (if any constraint is present). Then, tj is
consumed, and marked as covered;

• if a thread can not find a test context tci in which the tuple
tj is compatible or implied, a new test context is created

3

CIT Model Tuples Generator
Thread Tuple

Buffer

Test Builder
Thread 1

Test Builder
Thread 2

Test Builder
Thread n

 Test Context 1

 Test Context 2

 Test Context 3

 Test Context m

MDD

MDD

MDD

MDD

Fig. 4. Structure of the pMEDICI tool

Algorithm 2 Tuple consumption procedure
Require: TupBuffer , the buffer containing the tuple already

produced and ready to be consumed
Require: TC, the list of all the test contexts
Require: MC , the CIT model

▷ Extract the tuple from the tuple buffer
1: tj ← TupBuffer .extractF irst()

▷ Try to find a test context which implies the tuple
2: tc← findImplies(TC, tj)
3: if tc is not NULL then
4: tj .setCovered()
5: return
6: end if

▷ Try to find a test context which is compatible with tj
7: tc← findCompatible(TC, tj)
8: if tc is not NULL then
9: tc.updateTC(tj)

10: tj .setCovered()
11: return
12: end if

▷ Create a new empty test context
13: tc← createTestContext()
14: tc.addConstraints(MC .getConstraintsList())
15: if tc.isCompatible(tj) then
16: tc.updateTC(tj)
17: tj .setCovered()
18: else
19: tj .setUncovered()
20: end if
21: return

together with its MDD that initially contains only the
constraints. If tj is compatible with the newly created test
context, the tuple is consumed and marked as covered,
otherwise, it means that the tuple is not compatible with
the constraints, is marked as uncoverable and skipped.

Note that pMEDICI could perform the compatibility check
with the constraints even during the tuple generation, before

trying to add the tuple tj to any test context. We plan to add
this feature in a future version of the tool.

When all the tuples are consumed, each test context provides
the resulting test case. Thus, the test suite is composed of the
tests generated by all the test contexts. Algorithm 3 reports the
process used for collecting all the tests from the test contexts.

Algorithm 3 Tests collection
Require: TC, the list of all the test contexts
Require: Threads, the list of all the test builder threads
Require: TupBuilder, the thread building the tuples
Ensure: TS, the vector containing the test cases

▷ Join all the threads
1: for each thread ∈ Threads do
2: thread.join()
3: end for
4: TupBuild.join()

▷ Gather all the tests generated by the test contexts
5: for each tc ∈ TC do
6: TS.add(tc.getTest())
7: end for

D. Algorithm optimizations

Several optimizations can be performed over the pMEDICI
algorithm shown in the previous section. In particular, one can
optimize three main aspects in the process:

• test context selection: the threads building the tests, can
select the test context according to some policies (for
instance, by giving precedence to those having some
relations with the tuple to be added)

• management of the constraints: the test context could
optimize the storage of constraints, or in case there are
none, simplify the process

• tuple selection: the test builders could choose particular
tuples from the tuple buffer.

In terms of context selection, the findImplies and find-
Compatible (see Algorithm 2, lines 2 and 7) operations can
be optimized by ordering the test contexts. Preferable tests

4

contexts are those in which the cardinality of the MDD
(number of possible paths from the first parameter to the true
leaf) after the addition of the tuple is higher, since it allows
to create fewer tests with higher variability. The current ver-
sion of pMEDICI has already implemented this optimization.
However, as shown in the experiments in Sect. IV, ordering
the test contexts is not the best idea when working on models
with a lot of parameters or constraints, since the time required
for the ordering process overpass that of the test generation
algorithm. For this reason, the user can choose to exclude this
optimization.

Moreover, pMEDICI can avoid the use of MDDs if no
constraint is present in the combinatorial model under analysis.
In this way, we can avoid computing intersections among
MDDs, which is one of the most expensive operations in terms
of time. The instruction tc.updateTC(tj) can be substituted
by the following conditional statement:

tc.updateAssignments(tj)
if tc.getConstraintsList().size() > 0 then

▷ Update the MDD of the test context with tj
tc.updateMDD(tj)

end if

As future work, we are planning to include another opti-
mization, in terms of the selection of the tuples by the test
builder threads from the tuple buffer. Since the update of an
MDD require a lot of time to be performed (as an intersection
between two different MDDs has to be computed), a thread
could select in a smarter way the tuple to be managed by a
test context. In fact, a tuple ti can be easily covered by a test
context tc which is similar to the tuple. This operation can be
easily implemented by modifying line 1 of Algorithm 1.

E. Tool limits

Despite being based on the powerful structure of MDDs,
pMEDICI still has some limits which are directly connected
to the limitations of MDDs. In particular, pMEDICI is not able
to deal with models containing constraints with:

• Arithmetical operators, such as +, −, · and /;
• Comparisons between parameters, such as p1 = p2 or
p1 ̸= p2.

In principle, MDDs could deal also with arithmetic and
variable comparison by converting the constraints to pure
boolean expressions. However, in practice, this conversion is
not easy to be done and risks to generate constraints with
exponential length.

Moreover, the use of MDDs requires the translation of
each constraint in RPN (Reverse Polish Notation) which may
decrease the readability of the models.

SMT (Satisfiability Modulo Theories) solvers could be used
for CIT in alternative to MDDs since they allow to check if
a formula (the tuple) is satisfiable w.r.t. the constraints of the
model. However, using MDDs allows extracting several met-
rics from the test suite, such as its complexity, or cardinality.

Ordering

No order

0.0 0.2 0.4 0.6 0.8 1.0

Improvements

Fig. 5. Improvements of time for pMEDICI

We plan in the future to take advantage of SMT in order to
solve some of the limitations of MDDs for test generation.

IV. EXPERIMENTS

In this section, we report the results we have obtained using
the pMEDICI tool over the benchmark examples provided
by the organizers of the CT-Competition [1]. All the exper-
iments are performed using strength t = 2. As explained in
Sect. III-E, due to the structure of MDDs, our tool pMEDICI is
able to deal only with logical operators and not with relational
and mathematical ones. Thus, we intend to compete only in
the UNIFORM, MCA, BOOLC, and MCAC categories. Table I
reports the results, in terms of size and generation time for
all the benchmarks of these categories using the number of
threads automatically chosen by the tool, depending on the
execution environment architecture. We have executed the
experiments on a PC with Windows 11, Intel i7-3770 with
3.4 GHz, 8 threads, and 32 GB RAM. As required by the
competition regulation we have used a maximum execution
time of 300 seconds. Note that for the benchmarks with size
0 and generation time 0, we have verified that the generated
test suites are always empty (even with other generators
like ACTS [16] and MEDICI [7]) since the constraints are
too strict. However, in order to further test pMEDICI over
models with constraints, we have generated some additional
benchmark models (using the tool provided by competition
organizers4), which have been verified and must produce not
empty test suites, and we have reported the obtained results
in Tab. II.

A. Comparison between pMEDICI and MEDICI

In Tab. I and Tab. II, we have gathered the results obtained
with the comparison between the performance of pMEDICI
and MEDICI [7], from which our tool derives.

From our experiments, we have noticed that for each
model, either with or without constraints, pMEDICI always
requires less time for the test suite generation. The improve-
ments in terms of time with respect MEDICI, computed as
(TMEDICI − TpMEDICI)/TMEDICI , is shown in Fig. 5. As

4https://github.com/fmselab/CIT Benchmark Generator

5

https://github.com/fmselab/CIT_Benchmark_Generator

TABLE I
PERFORMANCE OF PMEDICI OVER THE BENCHMARKS AND COMPARISON WITH MEDICI

pMEDICI with ordering pMEDICI without ordering MEDICI
Benchmark name # Params # Constraints Size Generation time [s] Size Generation time [s] Size Generation time [s]

UNIFORM BOOLEAN 0 11 0 14 0.033 15 0.027 7 0.039
UNIFORM BOOLEAN 1 4 0 8 0.015 9 0.012 5 0.040
UNIFORM BOOLEAN 2 15 0 19 0.048 16 0.040 8 0.076
UNIFORM BOOLEAN 3 20 0 27 0.063 21 0.059 9 0.195
UNIFORM BOOLEAN 4 17 0 19 0.056 19 0.050 8 0.109

UNIFORM ALL 0 10 0 445 0.689 437 0.669 259 22.283
UNIFORM ALL 1 20 0 774 3.182 745 3.195 432 90.331
UNIFORM ALL 2 2 0 144 0.033 144 0.037 144 0.058
UNIFORM ALL 3 13 0 139 0.219 155 0.194 88 8.846
UNIFORM ALL 4 3 0 604 0.303 593 0.320 423 40.897

MCA 0 4 0 1,503 0.611 1,491 0.627 1,419 186.291
MCA 1 11 0 2,197 4.855 2,235 5.396 1,342 140.041
MCA 2 17 0 1,406 1.669 1,395 1.701 1,376 279.026
MCA 3 8 0 63 0.042 63 0.050 63 0.222
MCA 4 8 0 1,532 1.240 1,522 1.255 1,496 225.149

BOOLC 0 14 1 11 0.245 12 0.166 8 0.297
BOOLC 1 8 9 0 0.000 0 0.000 0 0.000
BOOLC 2 3 55 0 0.000 0 0.000 0 0.000
BOOLC 3 7 83 0 0.000 0 0.000 0 0.000
BOOLC 4 20 56 0 0.000 0 0.000 0 0.000

MCAC 0 11 49 0 0.000 0 0.000 0 0.000
MCAC 1 20 30 0 0.000 0 0.000 0 0.000
MCAC 2 5 47 0 0.000 0 0.000 0 0.000
MCAC 3 8 97 0 0.000 0 0.000 0 0.000
MCAC 4 19 27 0 0.000 0 0.000 0 0.000

TABLE II
PERFORMANCE OF PMEDICI OVER THE ADDITIONAL BENCHMARKS AND COMPARISON WITH MEDICI

pMEDICI with ordering pMEDICI without ordering MEDICI
Benchmark name # Params # Constraints Size Generation time [s] Size Generation time [s] Size Generation time [s]

ADD BOOLC 0 20 13 16 0.403 14 0.395 11 1.061
ADD BOOLC 1 20 11 16 0.907 17 1.022 11 4.772
ADD BOOLC 2 15 16 9 0.239 8 0.220 3 0.220
ADD BOOLC 3 14 16 4 0.169 6 0.106 1 0.178
ADD BOOLC 4 15 5 16 0.138 12 0.097 11 0.170

ADD MCAC 0 4 7 1 0.152 2 0.106 1 0.137
ADD MCAC 1 5 5 9 0.145 9 0.060 8 0.181
ADD MCAC 2 9 3 2,768 171.043 2,617 27.030 1,481 169.651
ADD MCAC 3 9 3 2,139 26.396 2,108 8.994 1,556 216.583
ADD MCAC 4 14 3 582 0.869 587 0.597 580 53.548

shown in the figure, pMEDICI can save till 99% of time w.r.t.
the original MEDICI.

However, we have observed that the saving is in general
higher when no ordering optimization is used, except for 8
benchmarks (see Sect. IV-B for further details).

In terms of size, not surprisingly MEDICI always performs
better or equally to pMEDICI. This was expected since consid-
ering multiple test contexts at once does not ensure to always
choose the best context in which a tuple can be inserted. In
fact, it is possible that the best context is already occupied
managing another tuple and, thus, a different context is chosen
by the algorithm. On the contrary, MEDICI manages only one
tuple at a time and this assures to always choose the best MDD
in which inserting the new tuple, minimizing the test suite size.

B. Impact of the ordering optimization on the test suite

As shown in Tab. I and Tab. II, we have found that ordering
the test contexts is not always an efficient optimization,
especially in terms of generation time.

This is evident especially when models with a lot of
parameters or constraints are analyzed since the time required
for the ordering process overpasses that of the test generation
algorithm (see, for example, the ADD_MCAC_2 benchmark).
In general, we can state that for the majority of the models, the
performances in terms of time when the ordering optimization
is activated are always worst or equal to those obtained when
the optimization is not activated.

However, we have observed that in some models, the
ordering optimization allows to reduce the test suite size up to

6

10%, no matter what is the complexity of the model. This is
because if the tests contexts are ordered, the algorithm chooses
in which test context insert every new tuple for minimizing the
size and avoids creating useless test contexts. However, this
heuristic can be less effective if multithread is enabled, since
the ”best” test context in which insert a new tuple may be
locked by other threads.

Thus, in our opinion, the user should choose whether
to use the ordering optimization or not depending on the
complexity of the analyzed model. Moreover, it should be used
when smaller test suites are preferable and avoided when the
generation time is more important than the size.

C. Impact of number of threads on the generation time

In our experiments, we have investigated the impact of
the number of threads on the test suite generation time and
observed that the gain in terms of generation time depends
on the complexity of the combinatorial problem. In particular,
our tests highlight that for models with fewer constraints and
parameters, increasing the number of threads is counterpro-
ductive or, sometimes, meaningless. In fact, for those models,
the overhead implied by the construction and coordination
between threads overpass the time required for the actual test
generation. On the other hand, when it comes to models with
a lot of constraints or parameters, the advantages of using
more threads overcome the thread management overhead. For
example, here we report in Fig. 6 and Fig. 7 how the test gen-
eration time changes for the models which require the highest
generation time (ADD_MCAC_2 and MCA_1, respectively with
and without constraints) and the lowest one (ADD_BOOLC_4
and UNIFORM_BOOLEAN_1, respectively with and without
constraints), when the ordering optimization is not active. In
particular, the plots of Fig. 6 show that for the most complex
models (ADD_MCAC_2 and MCA_1), increasing the number
of threads from 2 to 6 leads to a decrease in generation
time, that in the case of the ADD_MCAC_2 passes from 30
to 27 seconds. However, as well known, further increasing the
number of threads is not always the best solution and, over a
certain limit, having more threads means introducing a lot of
coordination overhead and does not yield any advantages. On
the other hand, for the simplest models (ADD_BOOLC_4 and
UNIFORM_BOOLEAN_1), introducing new threads only gives
minor improvements (Fig. 7).

D. Impact of number of threads on the test suite size

From our experiments, we have noticed that, as for the
generation time, the impact of the number of threads on the
test suite size varies, but generally by increasing the number
of threads the test suite gets smaller. In particular, our exper-
iments highlight that for models with fewer constraints and
parameters, increasing the number of threads can be meaning-
less (or even counterproductive), since is some cases a thread
starts when all the other threads have already completed the
computation, and thus, it does not contribute in decreasing or
increasing the size (see for instance UNIFORM_BOOLEAN_1).
On the contrary, for complex models, increasing the number

Fig. 6. Test suite generation time for models with the highest generation time

Fig. 7. Test suite generation time for models with the lowest generation time

of threads contributes in decreasing the test suite size. For
example, here we report in Fig. 8 and Fig. 9 how the test gen-
eration time changes for the models which require the highest
generation time (ADD_MCAC_2 and MCA_1, respectively with
and without constraints) and the lowest one (ADD_BOOLC_4
and UNIFORM_BOOLEAN_1, respectively with and without
constraints), when the ordering optimization is not active.

This is contrary w.r.t. what we expected: we initially thought
that by increasing the number of threads, the test suite would
have become bigger. Instead, the experiments show that the
higher is the number of threads, the smaller are the test suites.
We plan to investigate the reasons as future work.

V. RELATED WORK

This paper presents the pMEDICI tool which exploits the
MDDs and multithreading for generating combinatorial test
cases. The core functionalities of the tool are inherited from
the tool MEDICI [7], even if it is a single-threaded test
generator.

Nowadays, most of the available works on Combinatorial
Interaction Testing exploit sequential algorithms for solving
the problem such as AETG [5], IPO, IRPS [14], DDA [2],
IPOG [10], and G2Way [8]. Some attempts to develop a
multithread combinatorial tests generator have been done, but
the majority of them are able to deal only with combinatorial
models without constraints, and mainly exploit the IPOG

7

Fig. 8. Test suite size for models with the highest generation time

Fig. 9. Test suite size for models with the lowest generation time

algorithm. Examples are GMIPOG [15] and MC-MIPOG [13].
The former distributes the test sets generation process into
the grid by partitioning the work based on parameter value,
while the latter adopts a novel approach by removing control
and data dependency to permit the harnessing of multicore
systems. Other approaches, such as [12], exploit the search
method with map and reduce framework for generating test
suites, or a parallel tree structure, such as [9], or as in [11]
which utilizes vast amount of parallelism provided by graphics
processing units (GPUs). Other attempts to parallelize gener-
ation algorithms, even on the larges scale of grid computing
are presented in [3], [4]. Although very promising, these algo-
rithms require a powerful infrastructure while multi-threading
like that implemented by pMEDICI is more accessible.

VI. CONCLUSIONS

In this paper, we have presented pMEDICI which is a
combinatorial test suite generator exploiting MDDs and the
multithreading capabilities of recent PCs in order to reduce
the time required for the generation of a test suite. The
proposed tool is still a prototype but has proved to be very
effective in terms of generation time, both for models with
and without constraints. However, the size of the generated
test suite is almost never the lowest. Thus, as future work,
we are planning to introduce some heuristics which allow
reducing the size without requiring too much additional time.

Moreover, pMEDICI is not able to deal with constraints
containing arithmetical operations. Although they are quite
rare in models published in the literature, we plan to extend
our tool in order to support them. All the analyses conducted
in this paper are based on pairwise testing, Nevertheless, our
experiments show that our tool performs well also with t-wise
coverage, but further experiments are needed. In general, we
believe that the approach we devised for pMEDICI, based on
the parallelization and on the use of several test contexts, is
promising and can be further extended in order to overpass
almost all the limitations that this first prototype version of
our tool still has.

REFERENCES

[1] A. Bombarda, E. Crippa, and A. Gargantini. An environment for bench-
marking combinatorial test suite generators. In 2021 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, apr 2021.

[2] R. C. Bryce and C. J. Colbourn. The density algorithm for pairwise inter-
action testing. Software Testing, Verification and Reliability, 17(3):159–
182, 2007.

[3] A. Calvagna, A. Gargantini, and E. Tramontana. Building t-wise
combinatorial interaction test suites by means of grid computing. In
2009 18th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises. IEEE, jun 2009.

[4] A. Calvagna, G. Pappalardo, and E. Tramontana. A novel approach to
effective parallel computing of t-wise covering arrays. In 2012 IEEE
21st International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises. IEEE, jun 2012.

[5] D. Cohen, S. Dalal, M. Fredman, and G. Patton. The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions
on Software Engineering, 23(7):437–444, jul 1997.

[6] A. Gargantini and M. Radavelli. Migrating combinatorial interaction
test modeling and generation to the web. In 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 308–317, April 2018.

[7] A. Gargantini and P. Vavassori. Efficient combinatorial test generation
based on multivalued decision diagrams. In Hardware and Software:
Verification and Testing, pages 220–235. Springer International Publish-
ing, 2014.

[8] M. F. Klaib, K. Z. Zamli, N. A. M. Isa, M. I. Younis, and R. Abdullah.
G2way a backtracking strategy for pairwise test data generation. In 2008
15th Asia-Pacific Software Engineering Conference. IEEE, 2008.

[9] M. F. J. Klaib, S. Muthuraman, N. Ahmad, and R. Sidek. A parallel tree
based strategy for test data generation and cost calculation for pairwise
combinatorial interaction testing. In Networked Digital Technologies,
pages 509–522. Springer Berlin Heidelberg, 2010.

[10] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. IPOG: A
general strategy for t-way software testing. In 14th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS'07). IEEE, mar 2007.

[11] H. Mercan, C. Yilmaz, and K. Kaya. CHiP: A configurable hybrid
parallel covering array constructor. IEEE Transactions on Software
Engineering, 45(12):1270–1291, dec 2019.

[12] Z. H. C. Soh, S. A. C. Abdullah, K. Z. Zamli, and M. I. Younis.
Distributed t-way test suite data generation using exhaustive search
method with map and reduce framework. In 2010 IEEE Symposium
on Industrial Electronics and Applications (ISIEA). IEEE, oct 2010.

[13] M. I. Younis and K. Z. Zamli. MC-MIPOG: A parallel t-way test
generation strategy for multicore systems. ETRI Journal, 32(1):73–83,
feb 2010.

[14] M. I. Younis, K. Z. Zamli, and N. A. M. Isa. IRPS – an efficient test data
generation strategy for pairwise testing. In Lecture Notes in Computer
Science, pages 493–500. Springer Berlin Heidelberg, 2008.

[15] M. I. Younis, K. Z. Zamli, and N. A. M. Isa. A strategy for grid based
t-way test data generation. In 2008 First International Conference on
Distributed Framework and Applications. IEEE, oct 2008.

[16] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial
test generation tool. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, pages 370–375, 2013.

8

	Introduction
	Background
	Combinatorial Interaction Testing
	Multivalued Decision Diagrams

	pMEDICI: A parallel MDD-based algorithm for CIT
	How to deal with CIT models with MDDs
	How to represent (partial) tests with MDDs
	Tool structure and algorithm
	Algorithm optimizations
	Tool limits

	Experiments
	Comparison between pMEDICI and MEDICI
	Impact of the ordering optimization on the test suite
	Impact of number of threads on the generation time
	Impact of number of threads on the test suite size

	Related work
	Conclusions
	References

